If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-1=3
We move all terms to the left:
x^2+4x-1-(3)=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $
| (22+x)/4=8 | | 2x-1/x+3+1-2x/x-3=4-3x/x^2-9 | | 4v-3v+31=42 | | 13x+29=5x+173 | | 13x=29=5x+173 | | 32+x*2=236 | | 13x+29=5x=173 | | 0.24=x+x^2 | | 5x2=7x | | 6n^2-n-1275=0 | | 5-7x/2+4x=-8/7 | | 10x-2=4x+3 | | 4x=-21/36 | | 2x-42=100 | | -8x+-16=4x-100 | | x+1/x=11 | | 4x-2=6x+13 | | 4x+16=9x+6 | | a+17=-4 | | 98q-0.25q^2=0 | | 1/3(5-4c)=1/2(9-4c) | | (1/x^2-3x+2)+(1/x^2-5x+6)+(1/x^2-7x+12)+(1/x^2-9x+20)=1/15 | | 5(5x3)=10 | | 14y^2-11y-34=0 | | 14y*2-11y-34=0 | | 2(x^2+1/x^2)-7(x+1/x)+9=0 | | 1/10=(1/2)^x/10 | | 10-b=40 | | 4m=-81-5m | | 5x^2+23x+78=0 | | |3x-4|=14 | | I3x-4I=14 |